Design and implementation of Dilation X-ray Imager for NIF "DIXI"

نویسندگان

  • M. J. Ayers
  • S. R. Nagel
  • B. Felker
  • P. M. Bell
  • D. K. Bradley
  • K. Piston
  • J. Parker
  • Z. Lamb
  • J. D. Kilkenny
  • T. J. Hilsabeck
  • T. Chung
  • J. D. Hares
  • A. K. L. Dymoke-Bradshaw
چکیده

Gated X-Ray imagers have been used on many ICF experiments around the world for time resolved imaging of the target implosions. DIXI (Dilation X-ray Imager) is a new fixed base diagnostic that has been developed for use in the National Ignition Facility. The DIXI diagnostic utilizes pulse-dilation technology [1,2,3,4] and uses a high magnification pinhole imaging system to project images onto the instrument. DIXI is located outside the NIF target chamber approximately 6.5m from target chamber center (TCC). The pinholes are located 10cm from TCC and are aligned to the DIXI optical axis using a diagnostic instrument manipulator (DIM) on an adjacent port. By use of an extensive lead and poly shielded drawer enclosure DIXI is capable of collecting data at DT neutron yields up to Yn~ 1016 on CCD readout and up to Yn~ 1017 on film. Compared to existing pinhole x-ray framing cameras DIXI also provides a significant improvement in temporal resolution, <10ps, and the ability to capture a higher density of images due to the fact the pinhole array does not require collimators. The successful deployment of DIXI on the NIF required careful attention to the following subsystems, pinhole imaging, debris shielding, filtering and image plate (FIP), EMI protection, large format CsI photocathode design, detector head, detector head electronics, control electronics, CCD, film recording and neutron shielding. Here we discuss the initial design, improvements implemented after rigorous testing, infrastructure and commissioning of DIXI on the NIF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizing high energy spectra of NIF ignition Hohlraums using a differentially filtered high energy multipinhole x-ray imager.

Understanding hot electron distributions generated inside Hohlraums is important to the national ignition campaign for controlling implosion symmetry and sources of preheat. While direct imaging of hot electrons is difficult, their spatial distribution and spectrum can be deduced by detecting high energy x-rays generated as they interact with target materials. We used an array of 18 pinholes wi...

متن کامل

Design and Simulation of Hot Cathode Ionization Vacuum Gauge with no X-Ray Limitations

In this paper, the MEMS type ionization gauge with no X-Ray limitations has been presented. Having the dimensions of 2.4 mm× 0.8mm × 1.4 mm, the designed gauge is 9000 times smaller than the conventional type and can operate in HV and UHV pressures up to 5×10-9 torr. Operating at the temperature of 750°C, the cathode of proposed gauge is implemented using nickel and works in a way in...

متن کامل

Quality assessment of conventional X-ray diagnostic equipment by measuring X-ray exposure and tube output parameters in Great Khorasan Province, Iran

Introduction: Regular implementation of quality control (QC) program in diagnostic X-ray facilities may affect both image quality and patient radiation dose due to the changes in exposure parameters. Therefore, this study aimed to investigate the status of randomly selected conventional radiographic X-ray devices installed in radiology centers of Great Khorasan Province, Iran, to produce the da...

متن کامل

Refractive Dual Band Infrared Imager Optical Design

Infrared imagers are important for reorganization and monitoring. This paper discusses the design of an infrared imager. Optical design in medium wavelength infrared (MWIR) and long wavelength infrared (LWIR) bands is different and needs distinct detectors and materials. Reflective systems are not suitable due to their small field of view (FOV) and vignetting. Refractive dual band optical syste...

متن کامل

Novel Semisolid Design Based on Bismuth Oxide (Bi2O3) nanoparticles for radiation protection

Objective(S): The dangerous effects of X-ray have been elucidated by scientific studies in occupational health hygiene.  X-ray protective like an apron, thyroid shield and gloves have been made of lead (Pb) to protect against X-ray. However, such equipment makes a lot of safety and health problems such as toxicity, weight, inflexibility and troubles usage in a physician. To ove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013